电工钢 ›› 2025, Vol. 7 ›› Issue (4): 25-.

• • 上一篇    下一篇

Si、Al、Mn元素对无取向硅钢基础物性影响的热力学计算初探

吴宇轩1,王海军1,乔家龙2,夏雪兰3,施立发3,裴英豪3   

  1. 1.安徽工业大学 冶金工程学院,安徽 马鞍山 243000;
    2.钢铁研究总院有限公司 连铸技术国家工程研究中心,北京 100081;
    3.马鞍山钢铁有限公司,安徽 马鞍山 243002)
  • 出版日期:2025-08-28 发布日期:2025-09-01

Initial exploration of thermodynamic calculations on the impact of Si, Al,and Mn elements on the basic properties of non-oriented silicon steel

WU Yuxuan1, WANG Haijun1, QIAO Jialong2, XIA Xuelan3, SHI Lifa3, PEI Yinghao3   

  1. 1.School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243000, China;
    2.Engineering and Research Center for Continuous Technology, Center Iron andSteel Research Institute Co. Ltd., Beijing 100081, China;
    3.Maanshan Iron & Steel Company Limited, Maanshan 243002, China
  • Online:2025-08-28 Published:2025-09-01

摘要: 采用热力学软件JMat Pro计算了无取向硅钢中Si(3.0 %~3.6 %)、Al(0.5 %~1.5 %)、Mn(0.3 %~0.9 %)不同质量分数情况下的密度、电阻率、比热容和热导率。分析了Si、Al、Mn含量对无取向硅钢的密度、电阻率、比热容以及热导率的影响规律。计算结果表明,在25~500 ℃区间内,无取向硅钢密度随元素含量增加而降低,以300 ℃为例,当w(Al)从0.5 %增加至1.5 %,w(Si)与w(Mn)保持3 %和0.3 %不变时,无取向硅钢密度降低0.8 %;当w(Si)从3.0 %增加至3.6 %,w(Al)与w(Mn)保持0.8 %和0.3 %不变时,无取向硅钢密度降低0.53 %;w(Mn)从0.3 %增加至0.9 %,
w(Si)与w(Al)保持3 %和0.8 %不变时,无取向硅钢的密度几乎没有改变。电阻率方面,以300 ℃为例,对无取向硅钢影响最大的是w(Al),从0.5 %增加至1.5 %,电阻率增长16.42 %;w(Si)从3.0 %增加至3.6 %,电阻率增长5.63 %,而w(Mn)从0.3 %增加至0.9 %,电阻率增长仅有2.82 %。比热容方面,在25~700 ℃温度区间内,比热容随温度增加逐渐增大,以300 ℃为例,当w(Si)从3.0 %增加至3.6 %,比热容的增长0.52 %;w(Al)从0.5 %增加至1.5 %,比热容的增长达到1.04 %,而w(Mn)从0.3 %增加至0.9 %比热容的增长仅有0.35 %,可以看出在该温度区间内Al对无取向硅钢比热容影响最大,其次是Si,而Mn对无取向硅钢比热容影响最小。热导率方面,表现出明显的温度区间依赖性,在0~800 ℃区间内,Si、Al含量增加随温度升高无取向硅钢热导率明显下降;而在800~1 400 ℃区间内没有明显改变,Mn含量的改变与无取向硅钢热导率随温度变化曲线关联性不大。

关键词: 无取向硅钢, 密度, 电阻率, 比热容, 热导率

Abstract: The thermodynamic software JMat Pro was used to calculate the density, resistivity, specific heat capacity, and thermal conductivity of non-oriented silicon steel with varying contents of Si (3.0 %~3.6 %), Al (0.5 %~1.5 %), and Mn (0.3 %~0.9 %). The effects of Si, Al, and Mn contents on the physical properties of non-oriented silicon steel were analyzed. The results indicate that within the temperature range of 25~500 ℃, the density of non-oriented silicon steel decreases with increasing element content. For example, at 300 ℃, when the Al content increases from 0.5 % to 1.5 % while maintaining Si and Mn contents at 3 % and 0.3 %, respectively, the density decreases by 0.8 %; when the Si content increases from 3.0 % to 3.6 % while keeping Al and Mn contents at 0.8 % and 0.3 %, respectively, the density decreases by 0.53 %; and when the Mn content increases from 0.3 % 
to 0.9 % while maintaining Si and Al contents at 3 % and 0.8 %, respectively, the density changes are negligible. Regarding resistivity, at 
300 ℃, the Al content has the most significant impact, with a resistivity increase of 16.42 % when it increases from 0.5 % to 1.5 %; the Si content increases by 5.63 % when it rises from 3.0 % to 3.6 %, whereas the Mn content only causes a 2.82 % increase in resistivity. Specific heat capacity gradually increases with temperature within the range of 25~700 ℃. For example, at 300 ℃, the specific heat capacity increases by 0.52 % when the Si content rises from 3.0 % to 3.6 %, and by 1.04 % when the Al content increases from 0.5 % to 1.5 %, while the increase is only 0.35 % for Mn content rising from 0.3 % to 0.9 %. Thermal conductivity exhibits clear temperature dependent behavior: within the range of 0~800 ℃, it decreases significantly with increasing temperature due to higher Si and Al contents; however, there is no significant change in the 800~1 400 ℃ range, and Mn content variations do not show a strong correlation with changes in thermal conductivity.

Key words: non-oriented silicon stee, density, specific heat capacity, Thermal conductivity