电工钢 ›› 2025, Vol. 7 ›› Issue (2): 30-.

• • 上一篇    下一篇

新能源汽车驱动电机用无取向硅钢铁损及预测模型

帅  勇1,牛宇豪2,付  兵1,王海军3,乔家龙1,2,3,仇圣桃2,3   

  1. (1.新余钢铁股份有限公司 硅钢薄板事业部,江西 新余 338001;
    2.钢铁研究总院有限公司 连铸技术国家工程研究中心,北京 100081;
    3.安徽工业大学 冶金工程学院,安徽 马鞍山 243000)
  • 出版日期:2025-04-28 发布日期:2025-05-06

Prediction model and nonoriented silicon steel iron loss for new energy vehicle drive motor

SHUAI Yong1,NIU Yuhao2,FU Bing1,WANG Haijun3,QIAO Jialong1,2,3, QIU Shengtao1,2   

  1. (1.Silicon Steel & Sheet Business Division, Xinyu Iron and Steel Group Co., Ltd., Xinyu 338001, China; 2.National Engineering Research Center of Continuous Casting Technology, Iron and Steel Research Institute Co., Ltd., Beijing 100081, China; 3.School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243000, China)
  • Online:2025-04-28 Published:2025-05-06

摘要: 结合系统的中试试验研究和电子背散射衍射(EBSD)检测手段,研究2.7 %~3.6 % Si0.5 %~2.0 %  Al0.3 %~0.9 %  Mn无取向硅钢“成分-组织-织构”对铁损的影响,明确主要影响因素。采用SPSS软件,对铁损影响因素相关性进行主次统计分析,在此基础上采用多元线性回归方法和LightGBM算法建立无取向硅钢铁损的预测模型,且以预测结果的均方误差和平均误差评价模型的拟合能力。结果表明:成品板织构以{111}〈112〉和{114}〈481〉为主;Si,Al和Mn含量的增加增大了无取向硅钢电阻率,铁损P1.5/50相应下降;随着成品板晶粒尺寸的增加,铁损P1.5/50明显下降;“成分-组织-织构”对无取向硅钢铁损的主要影响因素有23组;采用多元线性回归方法和LightGBM算法建立铁损预测模型的预测结果均方误差分别可达8.76×10-3和3.81×10-5,平均误差率分别可达3.231 %和0.210 %,两种方法建立的模型均可用于无取向硅钢铁损的预测。但是,LightGBM算法的预测准确率高于多元线性回归模型,多元线性回归模型预测结果的解释性高于LightGBM算法。

关键词: 无取向硅钢, 铁损, 多元线性回归, LightGBM算法, 新能源汽车, 驱动电机

Abstract: Combined with the systematic pilot test research and electron backscatter diffraction (EBSD) detection means, the influence of "composition, microstructure and texture" of 2.7 %~3.6 % Si -0.5 %~2.0 %  Al -0.3 %~0.9 % Mn non-oriented silicon steel on the iron loss was investigated, and the main influencing factors were clarified. SPSS software was used to carry out the primary and secondary statistical analysis on the correlation of the factors affecting iron loss. On this basis, the multiple linear regression method and LightGBM algorithm were used to establish the prediction model of non-oriented silicon steel loss, and the fitting ability of the model was evaluated by the mean square error and average error of the prediction results. The results showed that: the textures of finished sheets are dominated by {111}〈112〉 and {114}〈481〉.The increase of Si, Al and Mn content increases the resistivity of nonoriented silicon steel, and the iron loss P1.5/50 decreases accordingly.With the increase of grain size of the finished sheets, the iron loss P1.5/50 decreases significantly.There are twenty-three main factors affecting the loss of nonoriented silicon steel by "compositionmicrostructuretexture".The mean square error of iron loss prediction model established by multiple linear regression method and LightGBM algorithm can reach 8.76×10-3 and 3.81×10-5, respectively, and the average error rate can reach 3.231 % and 0.210 %, respectively. The models established by the two methods can be used to predict the iron loss of non-oriented silicon. However, the prediction accuracy of the LightGBM algorithm is higher than that of the multiple linear regression model, and the interpretation of the prediction results of the multiple linear regression model is higher than that of the LightGBM algorithm.

Key words: non-oriented silicon steel, iron loss, multiple linear regression, lightGBM algorithm;new energy vehicle, drive motor