电工钢 ›› 2022, Vol. 4 ›› Issue (2): 33-.

• • 上一篇    下一篇

大数据技术在硅钢产品质量管控中的应用实践

黄望芽1,汤洪博1,苏异才2,温光浩1,沈杰3,赵斌1   

  1. 1.宝山钢铁股份有限公司 硅钢事业部,上海 201900;2.宝山钢铁股份有限公司 中央研究院,上海 201999;3.宝山钢铁股份有限公司 制造管理部,上海 201999
  • 出版日期:2022-04-28 发布日期:2022-04-18

Application practice of big data technology in quality control of silicon steel products#br#

HUANG Wangya1, TANG Hongbo1, SU Yicai2, WEN Guanghao1, SHEN Jie3, ZHAO Bin1   

  1. 1.Silicon Steel Division of Baoshan Iron and Steel Co., Ltd., Shanghai 201900,China; 2. Central Research Institute of Baoshan Iron and Steel Co., Ltd.,Shanghai 201999,China; 3.Manufacturing Management Department of Baoshan Iron and Steel Co., Ltd., Shanghai 201999,China
  • Online:2022-04-28 Published:2022-04-18

摘要: 磁性能指标是硅钢产品最关键的质量指标之一,但是目前磁性能判定100 %依赖于样品的离线实验室检测结果,生产线配置的在线检测仪的测量结果由于精度问题,不宜直接用于成品牌号判级。本文在现有硅钢产品质量管控体系基础上,利用大数据技术对生产数据进行分析与建模,构建不同磁性能指标在线检测模型,并在现有信息系统上完成模型库的集成部署,实现硅钢产品全长、多指标磁性能结果的拟合数据输出,支撑取样优化、精准分切、辅助综合判定等功能应用,进一步优化硅钢产品质量管控体系。

关键词: 硅钢, 磁性能, 大数据技术, 质量管控

Abstract: The magnetic performance index of silicon steel products is one of the most critical quality indexes. However, at present, 100 % determination of magnetic performance depends on the offline laboratory test results of samples, and the measurement results of the online detector configured in the production line cannot be applied in practice due to the accuracy problem.Based on the existing quality control system of silicon steel products, big data technology was used to analyze and model the production data in this paper, and different magnetic property index online detection models was constructed , and the integrated deployment of the model based on the existing information system was completed. Finally, the fulllength and multiindex magnetic properties of silicon steel products were realized, and functional applications such as sampling optimization, precise cutting and auxiliary comprehensive judgment were developed to further optimize the quality control system of silicon steel products.

Key words: silicon steel, magnetic properties, big data technology, quality control