摘要: KR搅拌法是铁水预脱硫的重要工艺之一,但在脱硫过程中脱硫剂的加入量主要依赖于人工经验控制,导致铸坯质量不稳定,一次脱硫命中率较低。为准确控制脱硫剂加入量,提高一次脱硫命中率,提出一种基于异质堆叠集成学习的脱硫剂加入量预测方法。首先,进行数据清洗,采用LOF算法结合专家经验剔除异常值。其次,采用最大信息系数结合斯皮尔曼秩相关系数进行特征筛选。最后,引入堆叠集成算法,基于评价指标和误差相关性分析优选模型的不同基学习器,并采用Optuna算法为基学习器寻找最优参数组合,建立异质堆叠集成预测模型。以现场采集的脱硫数据作为样本进行实例分析,结果表明,模型的决定系数(R2)为91.6%,均方根误差(RMSE)为197.79,平均绝对误差(MAE)为117.14,平均绝对百分比误差(MAPE)为6.95%。