炼钢 ›› 2023, Vol. 39 ›› Issue (4): 28-36.

• 转炉及电炉冶炼 • 上一篇    下一篇

基于机器学习算法的“全三脱”工艺转炉终点预测

张聪聪1,2,董文亮1,2,季晨曦1,2,李海波1,2,陈  斌1,2,赵长亮3   

  1. 1.首钢集团有限公司 技术研究院,北京 100043;
    2.北京市绿色可循环钢铁流程重点实验室,北京 100043;
    3.首钢京唐钢铁联合有限责任公司 炼钢作业部,河北 唐山 063200
  • 出版日期:2023-08-05 发布日期:2023-07-25

Endpoint prediction of duplex process converter based on machine learning algorithm

  • Online:2023-08-05 Published:2023-07-25

摘要: 建立精准的转炉终点预测模型对生产效率和钢液洁净度的提升尤为重要。以首钢京唐钢铁联合有限责任公司“全三脱”工艺转炉为
研究对象,对历史生产数据进行皮尔逊相关性分析,得到与转炉终点温度、碳含量最相关的15个自变量。利用BP神经网络、极限学习机(ELM)和支持向量机(SVM)3种机器学习算法分别建立了转炉终点预测模型。随后选取160组新样本数据来检验3种模型的预测精度,结果表明:SVM模型下转炉终点温度、碳含量预测模型精度更高,终点温度预测误差在±15 ℃内的命中率为90.6 %,终点碳质量分数预测误差在±0.01 %内的命中率为93.8 %。另外,基于支持向量机算法建立的转炉终点预测模型,全三脱工艺比常规工艺的终点温度误差±15 ℃内、碳质量分数±0.01 %内命中率分别提高了9.1百分点和14.4百分点。

关键词: “全三脱”工艺, 相关性分析, 转炉终点, 机器学习, 预测精度

Abstract: The establishment of accurate BOF endpoint prediction model is particularly important for the improvement of production efficiency and liquid steel cleanliness. This paper took the converter of Shougang Jingtang duplex process in converter process as the research object, Pearson correlation analysis was conducted on historical production data, and 15 independent variables most relevant to the endpoint temperature and carbon content of the converter were obtained. Three machine learning algorithms of BP neural network, limit learning machine (ELM) and support vector machine (SVM) were used to build the prediction model of converter endpoint. Then 160 sets of new sample data were selected to verify the prediction accuracy of the three models. The results show that the accuracy of the prediction model of the end-point temperature and carbon content of the converter under the SVM model is higher. The hit rate of the prediction error of the endpoint temperature within ±15 ℃ is 90.6 %, and the hit rate of the prediction error of the endpoint carbon mass fraction within ±0.01 % is 93.8 %. In addition, the prediction model of converter end point based on support vector machine algorithm shows that the hit rate of endpoint temperature within ±15 ℃ and carbon mass fraction within ±0.01 % of duplex process in converter process is 9.1 % and 14.4 % higher than that of the conventional process.

Key words: duplex process in converter, correlation analysis, converter endpoint, machine learning, prediction accuracy