炼钢 ›› 2016, Vol. 32 ›› Issue (4): 60-72.

• 特殊钢中夹杂物控制 • 上一篇    下一篇

钢液中原子与夹杂物颗粒间的介尺度物相及二步形核

  

  1. (1. 辽宁省化学冶金工程重点实验室,辽宁 鞍山 114051; 2. 辽宁省高校冶金工程重点实验室,辽宁 鞍山 114051; 3. 辽宁科技大学 材料与冶金学院,辽宁 鞍山 114051)
  • 接受日期:1900-01-01 出版日期:2016-08-05

The mesoscale phase between atoms and inclusion particles as well as inclusion nucleation with two-step in molten steel

  • Accepted:1900-01-01 Online:2016-08-05

摘要: 大量试验和工业生产实践表明,钢液用金属(如铝、硅)脱氧反应难以达到生成固体氧化物夹杂的热力学平衡状态,即脱氧产物不能完全转变为最稳定结构的晶体或固体氧化物夹杂,部分脱氧产物以稳定性低于氧化物夹杂的亚稳相形式存在。亚稳相是熔体中处于原子与夹杂物颗粒尺度之间的介尺度物相,同时其结构也是介于液态(包括无定型)与稳定的固态(包括晶体)结构之间的演变状态。利用第一性原理方法优化显示,金属脱氧体系中的介尺度亚稳相包括形核前的不同数目的脱氧剂原子和氧原子结合的氧化物团簇、团簇聚集体、临界核以及形核后的纳米尺寸氧化物夹杂。热力学平衡计算发现亚稳相恰好与脱氧后体系中的脱氧剂和氧元素含量达到平衡。脱氧过程中夹杂物形核服从二步机理,第一步为脱氧剂原子与氧反应生成团簇,该过程的热力学趋势大、反应速率快,反应平衡决定了脱氧后的溶解氧含量;第二步为团簇聚集成核,该过程涉及团簇的扩散和类液态结构向固态或晶体结构的转变行为,是脱氧反应的限制性环节,决定了夹杂物的形核率。因此,要实现对夹杂物尺寸分布的控制,需进一步研究影响第二步的相关因素以及控制方法。

关键词: 脱氧, 夹杂物, 介尺度, 亚稳相, 二步形核

Abstract: Many experiments and industrial practices show that it is hard to achieve the thermodynamic equilibrium during metal deoxidization reaction to form solid inclusions in liquid steel. The deoxidizing products cannot transform completely into the most stable structure of crystal or solid inclusions, possibly to form the metastable phase whose stability is lower than that of solid crystal. The metastable phase may be mesoscale phase, the size of which is between atoms and macroscopic particles, while the structure is in the evolution state from liquid (including amorphous state) to stable solid (including crystalline state). The computation by first principles shows that the mesoscale metastable phase in deoxidation system includes oxide clusters that formed with deoxidizer atoms and oxygen and aggregates before nucleation, critical nucleus and nanosized oxide inclusions after nucleation. The computation of equilibrium thermodynamics shows that the metastable phase is in equilibrium with deoxidizer and oxygen in the deoxidation system. The nucleation of inclusions during deoxidation is done in two steps. The first step is the reaction between deoxidizer atoms and oxygen to form clusters, which determines the dissolved oxygen content. In this step, the thermodynamic tendency is big and the reaction rate is high. The second step is the aggregation of clusters into nucleus, which is a limit step to determine the nucleation rate of inclusions that includes the diffusion of clusters and the transformation behavior of liquidlike into solid or crystal. Therefore, it is important to study the related factors affecting the second step and the control methods to control the size distribution of inclusions.

Key words: deoxidation, inclusion, mesoscale, metastable phase, twostep nucleation