›› 2016, Vol. 32 ›› Issue (3): 35-40.

• 凝固与浇铸 • 上一篇    下一篇

钢包浇铸末期汇流旋涡形成的影响因素研究

梁永昌1,唐海燕2,江涛1,程鹏飞3,3,程鹏飞4,王勇5,郭晓晨4   

  1. 1. 北京科技大学
    2. 北京科技大学冶金学院
    3.
    4. 北京科技大学 高端金属材料特种熔炼与制备北京市重点实验室
    5. 北京科技大学钢铁冶金新技术国家重点实验室, 北京科技大学冶金与生态工程学院
  • 收稿日期:2015-09-23 修回日期:2016-01-04 接受日期:1900-01-01 出版日期:2016-06-05 发布日期:2016-06-15
  • 通讯作者: 唐海燕 E-mail:tanghaiyan9583@163.com

Research on influence factors of sink vortex during ladle teeming

  1. 1.
    2. School of metallurgical and ecological engineering,University of Science and Technology Beijing
    3. National Key Laboratory of Ferrous Metallurgy New Technology, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing
  • Received:2015-09-23 Revised:2016-01-04 Accepted:1900-01-01 Online:2016-06-05 Published:2016-06-15

摘要: 针对某厂浇铸末期钢包残钢量偏大的问题,通过物理模拟的方法研究了钢包长水口直径、水口偏心率、渣层厚度等因素对钢包浇铸末期汇流旋涡临界起旋高度和贯通高度(空气柱贯通至水口时的液面高度)的影响。研究结果表明:旋涡产生的临界高度随着出水口直径的增加而增加。出水口直径由30mm变化至60mm,起旋高度和贯通高度分别由89.6,25.6mm升高至165.0,40.7mm;当出水口偏心率小于0.7时,水口位置对于贯通高度的影响不明显;但当偏心率由0.7变化至0.8时,贯通高度显著升高;适宜的水口位置为距离钢包底部中心0.7R处;开始卷渣高度随着油层厚度增加呈升高的趋势,但二者并不是线性关系。水口直径为50mm时,油层厚度由40 mm增加到50mm,卷渣临界高度增加10mm。

关键词: 钢包, 汇流旋涡, 卷渣, 临界高度, 物理模拟

Abstract: For the problem of large residual steel during ladle teeming in a steel factory, the physical simulation was carried out to investigate the effects of ladle long nozzle diameter, nozzle eccentricity and slag thickness on the critical starting height of vortex and penetrating height (the liquid height of air column penetrating through the nozzle) during liquid draining. The results showed that the critical height of votex increased with increasing nozzle diameter. The starting votex height and penetrating height rised from 89.6,25.6mm to 165.0 and 40.7mm respectively for the simulated ladle when the nozzle diameter varied from 30mm to 60mm. The penetrating height of drain sink votex varied slightly with different nozzle positions when nozzle eccentricity was within 0.7, however, its value dramatically rised when nozzle eccentricity increased from 0.7 to 0.8. The optimum nozzle position was at 0.7R from the center of the ladle bottom. The critical slag entrapment height rised with the increasing layer thickness non-linearly. The slag entrapment height increased by 10mm when model slag thickness rised from 40mm to 50mm under the condition of 50mm of nozzle diameter.

Key words: ladle, sink vortex, slag entrapment, critical height, physical simulation